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Abstract
Mixed concrete and symbolic execution is an important technique
for finding and understanding software bugs, including security-
relevant ones. However, existing symbolic execution techniques are
limited to examining one execution path at a time, in which sym-
bolic variables reflect only direct data dependencies. We introduce
loop-extended symbolic execution, a generalization that broadens
the coverage of symbolic results in programs with loops. It intro-
duces symbolic variables for the number of times each loop ex-
ecutes, and links these with features of a known input grammar
such as variable-length or repeating fields. This allows the symbolic
constraints to cover a class of paths that includes different num-
bers of loop iterations, expressing loop-dependent program values
in terms of properties of the input. By performing more reasoning
symbolically, instead of by undirected exploration, applications of
loop-extended symbolic execution can achieve better results and/or
require fewer program executions. To demonstrate our technique,
we apply it to the problem of discovering and diagnosing buffer-
overflow vulnerabilities in software given only in binary form. Our
tool finds vulnerabilities in both a standard benchmark suite and 3
real-world applications, after generating only a handful of candi-
date inputs, and also diagnoses general vulnerability conditions.

1. Introduction
Mixed concrete and symbolic execution generalizes a single con-
crete execution by representing inputs as variables and perform-
ing operations on values dependent on them symbolically (such
as [11,24]). This approach enables automated tools to reason about
properties of all the program executions that follow the same con-
trol flow path, and has been successfully applied to a wide range of
different applications in software engineering and security. How-
ever, this approach generalizes an execution only to a set of execu-
tions that follow exactly the same control-flow path. We therefore
call this approachsingle-path symbolic execution(SPSE for short).

One of the limitations of single-path symbolic execution is that
it interacts poorly with loops, a common programming construct. In
particular, the generalized program executions all follow the same
number of loop iterations for each loop as in the original concrete
execution. For instance, when single-path symbolic execution is ap-
plied to bug-finding, it will not be able to detect the bug from a
benign execution if the bug can only be triggered with a different
number of loop iterations as in the original execution; similarly,

[Copyright notice will appear here once ’preprint’ option is removed.]

when single-path symbolic execution is applied to test case genera-
tion to increase testing coverage, it will not be able (in one iteration)
to generate an input to go down a different branch than in the orig-
inal execution if taking that different branch is only feasible with a
different number of loop iterations. In other words, in single-path
symbolic execution, the values of a symbolic variable reflect only
the data dependencies on the symbolic inputs, not any control de-
pendencies, including loop dependencies.

In this paper we propose a new symbolic execution technique,
loop-extended symbolic execution(or LESE for short), which gen-
eralizes from a concrete execution to a set of program executions
which may contain a different number of iterations for each loop as
in the original execution. In loop-extended symbolic execution, in
addition to the data dependencies on symbolic inputs, the value of
a symbolic variable will also capture certain loop dependent effects
(such as a linear relationship with the number of loop iterations).

At a high level, our approach of loop-extended symbolic exe-
cution works by introducing new symbolic variables to represent
the number of times each loop in the program has executed. It aug-
ments the symbolic execution with a more detailed analysis to iden-
tify loop-dependent variables, for instance finding variables whose
value is a linear function of one or more loop execution counts.
In addition to maintaining the data dependencies of program state
variables on inputs as in SPSE, LESE also relates loop-dependent
variables to features of the program input, introducing auxiliary
variables to capture the lengths and repetition counts of fields in
a known input grammar. Together, these constraints capture how
loop-dependent variables relate to the program’s input.

Loop-extended symbolic execution can be used to get better re-
sults from symbolic execution whenever it is used with programs
in which loops are important. For instance, it can make bug find-
ing tools more effective and allow test-case generation to reach
higher coverage more quickly. These benefits come because LESE
captures more program logic in symbolic constraints. When rep-
resented symbolically, these constraints can be reasoned about di-
rectly by a decision procedure, rather than requiring many iterations
of undirected search as with SPSE.

As sample applications, this paper uses loop-extended symbolic
execution to discover and diagnose buffer-overflow vulnerabilities,
one of the most important classes of software errors that allow at-
tackers to subvert programs and systems. Our tool can be used to
search for previously unknown vulnerabilities, and for any vulner-
ability can determine a general set of conditions under which the
vulnerability may be exploited. Because LESE can determine loop
iteration counts in a single step, it allows vulnerabilities to be dis-
covered using many fewer iterations than single-path symbolic ex-
ecution. Diagnosing a set of general vulnerability conditions is a
new application that would not be possible for most buffer over-
flows with single-path symbolic execution. These conditions are
useful for understanding the vulnerability, testing for it, fixing it,
and blocking attacks targeting it.

Because symbolic execution is often used in security-related ap-
plications such as this one, it is important that it works well for
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binary programs for which source code is not available. We there-
fore design algorithms with this constraint in mind: in some cases
our tools must work to recover structure, such as the boundaries of
loops, that appears trivially in the original source.

We have built a full implementation of this technique, using a
dynamic tool to collect program traces and an off-the-shelf deci-
sion procedure to simplify and solve constraints. We use our tool
to discover and diagnose vulnerabilities in both a standard bench-
mark suite and three real-world programs on Windows and Linux.
Because of the heuristic nature of the extension to unobserved loop
iterations, the theoretical soundness properties of LESE are limited
to the same executions considered by SPSE. However, the fact that
its practical performance is much better confirms that the behavior
of loops in real programs is usually very regular.

In summary, this paper makes the following contributions:
• We introduce loop-extended symbolic execution, a new, more

powerful approach to symbolic execution that incorporates the
semantics of loops.

• We give algorithms and heuristics to implement LESE that are
simple enough to implement at scale, but effective in practice.

• We show an application of LESE to the important security chal-
lenge of buffer overflow vulnerabilities, including a realistic im-
plementation that does not require source code.

• We evaluate the implementation, showing that it is effective at
finding and diagnosing vulnerabilities in both standard bench-
marks and vulnerable real-world programs.
The rest of the paper is organized as follows: Section2 moti-

vates our loop-extended symbolic execution with an example and
then gives a more detailed overview of the technique. Section3 de-
scribes the two key algorithms used to analyze loop dependencies
and to link loops to input features. Section4 introduces a primitive
for condition analysis and how to apply it to security vulnerabili-
ties, and Section5discusses some details needed to build a practical
implementation that works on binaries. Section6 gives our evalua-
tion of our technique on benchmarks and real-world vulnerabilities.
Finally, Section7 surveys related work, and Section8 concludes.

2. Overview
In this section, we first motivate our approach with an example
showing the limitation of single-path symbolic execution, then give
an overview of our technique of loop-extended symbolic execution.

2.1 Motivation and Challenges
Using symbolic execution to generalize over observed program be-
havior is a powerful technique because it combines the strengths
of dynamic and static analysis. It starts with a fully correct and
detailed concrete program trace, and then generalizes that trace to
predict the behavior of software on other inputs. For instance, this
approach can be used to find bugs [11,24,42] or vulnerabilities [25]
in software, to understand the conditions under which a program
path can occur [6], and even to automatically exploit a security vul-
nerability [7]. However, the core single-path symbolic execution
technique corresponds to an analysis of just one control-flow path
in a program, which is a significant limitation in programs that con-
tain loops. Next, we show this limitation with a specific example.
Example. Consider a simplified example of a function in an HTTP
server, shown in Figure2, that processes HTTP GET requests. The
program first checks that the request’s method field has the value
GET on line 9, and then proceeds to parse the URI and version
fields into separate buffers on lines 12–16 and 18–22 respectively.
It rejects this request if the version number is unsupported. Finally,
it records the URI requested by the client and the version number
in a comma separated string denoted bymsgbuf on lines 26-30,
which it subsequently logs by invokingLogRequest on line 32.

1 #define URI_DELIMITER ’ ’
2 #define VERSION_DELIMITER ’\n’
3

4 void process_request(char * input)
5 {
6 char URI[80], version[80], msgbuf[100];
7 int ptr=0, uri_len=0, ver_len=0, i, j;
8

9 if (strncmp input, "GET ", 4) != 0)
10 fatal("Unsupported request");
11 ptr = 4;
12 while (input[ptr] != URI_DELIMITER) {
13 if (uri_len < 80)
14 URI[uri_len] = input[ptr];
15 uri_len++; ptr++;
16 }
17 ptr ++;
18 while (input[ptr] != VERSION_DELIMITER) {
19 if (ver_len < 80)
20 version[ver_len] = input[ptr];
21 ver_len++; ptr++;
22 }
23 if (ver_len < 8 || version[5] != ’1’)
24 fatal("Unsupported protocol version");
25

26 for (i=0,ptr=0; i < uri_len; i++, ptr++)
27 msgbuf[ptr] = URI[i];
28 msgbuf[ptr++] = ’,’;
29 for (j = 0; j < ver_len; j++, ptr++)
30 msgbuf[ptr] = version[j];
31 msgbuf[ptr++] = ’\0’;
32 LogRequest(msgbuf);
33 }

GetRequest→ "GET " URI " " Version "\n"

Figure 2: A simplified example from an HTTP server program, and
the corresponding input grammar.

Readers may have already noticed that this code is vulnerable to
a buffer overflow, but suppose we were attempting to check for such
vulnerabilities using a single-path symbolic execution technique.
For instance, in the course of its exploration, such an iterative test
generation tool might consider the program inputGET x y. It will
trace the execution of the program with this input, which causes the
program to reach the error condition on line 24. In order to explore
the rest of the function, the exploration tool needs to find a program
input that passes the checks on line 23. However, a single path
does not contain enough information to reason about the length
check, because thever_len variable is not directly dependent
on any byte of the input: single-path symbolic execution would not
mark it as symbolic. At this point, testing tools based on symbolic
execution will usually attempt to explore other program paths, but
without information from the first path to guide them, they can only
choose further paths in an undirected fashion, such as by trying to
take a different direction at one of the branches that occurred on
the observed path. (Such tools treat the execution of a loop simply
as a sequence of branches, one for each time the loop end test is
executed.) For instance, a tool might determine that changing the
last character of the input from a newline toz would cause the
loop at line 18 to run for one additional iteration. A series of many
such changes would be required before the version field was long
enough to pass the check.

Similarly, consider the execution of the program on the normal
program inputGET /index.html HTTP/1.1. For this simple
function, a single input already exercises a large proportion of the
code (for instance, it executes all of the lines of non-error code in
the figure). However, examining this single path is not enough to
elucidate the relationship between the variableptr and the input,
because that relationship involves control dependencies.
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Figure 1: Overview of our loop-extended symbolic execution tool and accessory components. LESE, our main contribution, enhances
symbolic execution for directly input-dependent data values, as in single-path symbolic execution, with symbolic analysis of the affects
of loops (Section3.1) and an analysis that links loops to the input fields they process (Section3.2). Additional components, described in
Sections4 and5, support LESE and particular applications such as detecting and diagnosing security bugs.

2.2 Technique Overview
We propose a new type of symbolic execution,loop-extended sym-
bolic executionor LESE, which captures the effects of many more
related program executions than just a single path (as in single-path
symbolic execution), by modeling the effects of loops.

Broadly, the goal of loop-extended symbolic execution is to ex-
tend the symbolic expressions computed from a single execution by
incorporating additional information reflecting the effects of loops
that were executed. In single-path symbolic execution, the values
of variables are either concrete (i.e., constant, representing a value
that does not directly depend on the symbolic input) or are repre-
sented by a symbolic expression (for instance, the sum of an input
byte and a concrete value). But some of the values considered con-
crete by single-path symbolic execution are in fact indirectly de-
pendent on the input because of loops. In loop-extended symbolic
execution these values can also be represented symbolically, and
variables whose values were already symbolic because of a direct
input dependency can have a more general abstract value.

To make loop-extended symbolic execution more tractable, we
split the task into two parts by introducing a new class of symbolic
variables, which we calltrip counts. Each loop in the program has a
trip count variable that represents the number of times the loop has
executed at any moment. Then to obtain the relationship between a
symbolic values and the program input, we separately obtain first
the relationships between the symbolic values and one or more
trip counts (in addition to their direct relationships with the input,
as in single-path symbolic execution), and then the relationships
between the program’s trip counts and the program input:
• Step 1: Symbolic analysis of loop dependencies.To determine

dependencies on loop trip counts, we use a program analysis that
maintains the trip counts as symbolic variables that are implicitly
incremented for each new loop iteration, and then looks for
relationships between those variables and others in the program.
(This is done at the same time as the analysis tracking direct
dependencies as in SPSE, and the results combined in single
symbolic expressions.) Specifically, we have found that looking
for linear functions of the trip counts covers the most important
loop dependent variables without excessive analysis cost.

• Step 2: Constraints linking input grammar to loops. Loops
are often used when fields of the input are of variable length,
such as character strings and sequences of data of the same
type. Our approach takes advantage of this connection by using
a grammar that specifies the inputs to the program, and matching

loops with the parts of the input over which they operate. In
particular, the approach introducesauxiliary input variables to
capture features of the grammar such as lengths and repetition
counts.

A summary of the components of our system is shown in Fig-
ure1; the center box, LESE, represents the primary contribution of
this research.

Example, revisited. To summarize our approach, we now return to
the example of Figure2 and explain how loop-enhanced symbolic
execution is more helpful to our vulnerability testing application.

1. In the first step, the symbolic loop dependence analysis ex-
presses various program values in terms of four trip count sym-
bolic variablesTCi, one for each loopi in the program. For
instance, the value of the variableptr at the end of execu-
tion is abstracted by the expressionTC3 + TC4 + 2, and sim-
ilarly uri len = TC1, ver len = TC2, i = TC3, and
j = TC4. The path predicate is also maintained (as in single-
path symbolic execution). In this example, for instance,i <
uri len inside the third loop, while the negation holds after
the loop has completed, and similarly forj andver len.

2. In the second step, we link the trip counts to auxiliary variables
representing features of the input. In the running example, the
execution counts of the first two loops are equal to the lengths of
input fields:TC1 = Length(URI)andTC2 = Length(Version).

In the case of vulnerability checking, we would combine these
symbolic constraints describing a class of program executions with
the condition for a violation of the security policy. In this case, for
instance, the array access on line 30 will fail ifptr ≥ 100. Then
in the same way as in a single-path symbolic execution approach,
we can pass these conditions to a decision procedure to determine
whether an exploit is possible, and if so, determine specific values
for input variables that will trigger it. In this case, the decision
procedure will report that an overflow is possible, specifically on
an input for which Length(URI) + Length(Version)≥ 99.

Applying the approach to binaries. Because we wish to use
these analysis techniques for security applications, it is an impor-
tant practical consideration that they work on binary programs for
which source code is not available. This adds further challenges for
our approach: for instance, purely static analysis is more difficult
on binaries because much of the structure that existed in the source
code has been lost. (And of course, the real constraints we generate
do not contain variable names, which we added in the example for
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readability.) It is in part for this reason that the symbolic execution
approach is valuable in the first place, so we choose algorithms to
retain these benefits in our extension. For instance, even though the
technique we use to infer linear relationships between variables is
closely related to a sound static analysis approach, we do not limit
it to finding relationships that could hold on all possible inputs. In-
stead, our goal is to combine static and dynamic analysis to produce
results that cover as large as possible a range of inputs for which
we can still produce useful results.

Use of an input grammar. Information that constrains the space
of valid inputs to a program, in the form of a grammar or other-
wise, is key to scaling input space exploration beyond the limits
of brute-force exhaustive search. Previous research using symbolic
execution [23,33] demonstrates the benefit of using an input gram-
mar for this purpose. In the application domains we target, suitable
grammars are easily available, so we simply use them. However,
for domains in which grammars are not already available, previous
research shows how a grammar can be inferred [9, 31, 44]; such a
system could easily be combined with ours.

3. Algorithms
In this section, we discuss the algorithmic details of the key steps
in loop-extended symbolic execution introduced in Section2. Sec-
tion 3.1describes the analysis that identifies relationships between
values of variables and numbers of loop iterations (step 1). Sec-
tion 3.2 outlines techniques to capture the relationships between
loops and the input, using auxiliary variables in the external speci-
fication of the input grammar (step 2).

The steps described below require accessory components to ex-
tract control flow graphs from binaries, make irreducible CFGs re-
ducible, extract sizes of allocated objects, and parse input gram-
mars. The details of these components, which form the preparation
phase for steps outlined here, are given later in Section5.

3.1 Symbolic Analysis of Loop Dependencies
In order to generalize its description of computations that involve
loops, our tool must determine the relationship between loop-
dependent variables and the loops in which they are modified.
Potentially, this could be done by enhancing the basic single-path
symbolic execution approach with any data-flow-style value anal-
ysis. Since linear dependencies on loop counts are very common,
we choose to use a linear relationship analysis. Specifically, our
tool searches for variables whose value is a linear function oftrip
countvariables representing the number of times one or more loops
execute. It then propagates those relationships on to other variables
(including after the loop) whose values depend on them, where
they may also intermingle with symbolic values representing direct
input dependencies.

For three reasons, we have chosen to implement this linear
relationship analysis in style of symbolic execution. First, unlike
the syntactic “induction variable” analysis commonly performed in
compilers [1], we wish to extend dependencies on loop execution
counts after the loop itself has finished, and combine dependencies
on separate loops. Second, because the approach already uses sym-
bolic execution to track direct input dependencies, performing the
loop analysis in a compatible way allows the two analyses to pro-
ceed together and easily produce combined results. Finally, even
seemingly simple operations such as adding a constant can be ex-
pressed in many ways at the instruction level, so focusing on the
semantics of basic operations (in the style of abstract interpreta-
tion) is more robust and flexible than syntactic pattern matching.

Our approach is therefore intermediate between purely syntactic
induction variable analysis, and a general analysis for linear equal-
ities among arbitrary program variables, which would be signifi-

Figure 3: The partial order among some typical abstract values used
in the linear relationship analysis of Section3.1. A line connectsa
(higher) tob (lower) if a ⊒ b. Values on the same level connected
by = are both⊑ and⊒.

cantly more expensive. We will first describe the abstract interpre-
tation in general terms, in which form it can also be applied purely
statically, and then discuss how to modify it to produce more useful
results in our mixed static/dynamic context.

Analysis algorithm. For each loopi in the program, we introduce
a symbolic trip count variableTCi, which represents the number of
times the loop (specifically, its back edge) has executed. The core
of an abstract value in our analysis is a symbolic linear combina-
tion whose terms are trip counts or other symbolic variables, with
integer scaling factors and an integer constant term. For instance,
the abstract value10 + 4 · TC1 + 2 · TC2 would correspond to a
variable initialized as 10, then incremented by 4 on each iteration
of the first loop and by 2 on each iteration of the second loop.

In order to link these abstract values with the loops and under-
stand how to combine them between loop iterations, each abstract
value also specifies the domain for each trip count variable it ap-
plies to. We refer to the four possible domains as0, 1, ∗, and∗+1.
Intuitively, 0 represents points before the loop has finished its first
iteration,1 represents later points before the end of the second iter-
ation, and∗ and∗+1 both represent abstract values applicable to all
iterations, before and after the trip count in question is incremented.
We write the domains in angle brackets after an expression, in order
(first TC1, thenTC2, etc.); domains not listed are assumed to be
0. We define a partial ordering on these domains (intuitively corre-
sponding to inclusion) in which0 ⊑ ∗, 1 ⊑ ∗, and∗ = ∗+ 1. This
ordering extends to a partial ordering on the abstract values (in-
tuitively, function inclusion), in which abstract values are related
if their domains are related point-wise in the same way, and their
linear expressions are consistent over their common domains. For
instance,10〈0〉 ⊑ 10 + 4 · TC1〈∗〉, 14〈1〉 ⊑ 10 + 4 · TC1〈∗〉,
and10 + 4 · TC1〈∗〉 = 14 + 4 · TC1〈∗+ 1〉. Finally, to represent
values that cannot be represented as a linear combination of trip
counts, we add a distinguished element⊤ at the top of the partial
order. Some elements of this partial order are illustrated in Figure3.

The rules for operations on these abstract values are like those
of symbolic execution. Operations on values with only constant
terms give the corresponding constants. Addition, subtraction,
unary negation, and multiplication by a constant operate on linear
expressions according to the usual rules of algebra, but multiplica-
tion of two trip counts gives⊤. We have not encountered a need
for an analogous rule for division by constants, though it would be
straightforward to add (perhaps along with generalizing the scale
factors to rationals). Other non-linear operators, such as bitwise
operations, give⊤ on non-constants involving trip count variables,
as does any operator if one operand is already⊤.

The analysis builds an abstract store that associates an abstract
value as described above with abstract variables corresponding to
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distinct variables in our machine-level trace (temporaries and ma-
chine registers) and memory locations. As is conventional in ab-
stract interpretation, the abstract store is updated with the side ef-
fect of each assignment, including stores to memory, and prop-
agates forward through the program. We propagate across for-
ward CFG edges in a topologically sorted order to reduce re-
computation. The back edges of loops are treated specially: if a
CFG edge is the back edge of loopi, the domains for all theTCi

variables in the abstract store are incremented from0 to 1 and from
∗ to ∗ + 1. Such back edge values are then joined with the ab-
stract values representing previous iterations. The join operation
⊔ matches the partial ordering⊑ defined earlier, and prefers∗ to
∗ + 1, which ensures that1 and∗ + 1 domain values will not be
propagated. Specifically,a〈0〉 ⊔ (a + b)〈1〉 = a + b · TC1〈∗〉 and
a+ b ·TC1〈∗〉⊔ (a+ b)+ b ·TC1〈∗+1〉 = a+ b ·TC1〈∗〉. After
the first (abstract) execution of a back edge,0 and1 values will be
joined to a∗ value. After each subsequent abstract execution, the
∗ and∗ + 1 values will be joined into either a∗ value if they are
consistent, or to⊤ otherwise.

For instance, consider the analysis of loop 3 on lines 26–27 of
Figure2. At the beginning of the loop,ptr has the abstract value
0〈0, 0, 0〉. At the end of the first iteration,ptr is incremented, and
on the loop back edge the two abstract values are joined to give
0〈0, 0, 0〉 ⊔ 1〈0, 0, 1〉 = TC3〈0, 0, ∗〉. Whenptr is incremented
again on the next iteration, its abstract value after the back edge will
be1 + TC3〈0, 0, ∗ + 1〉, which again joins toTC3〈0, 0, ∗〉 ⊔ 1 +
TC3〈0, 0, ∗ + 1〉 = TC3〈0, 0, ∗〉. On the other hand, ifptr had
been incremented by 2 on an iteration, giving2+TC3〈0, 0, ∗+1〉,
the join would giveTC3〈0, 0, ∗〉 ⊔ 2 + TC3〈0, 0, ∗ + 1〉 = ⊤,
signifying thatptr cannot be expressed as a linear function of the
trip counts. The effect of the increments on lines 28 and 31 and
loop 4 on lines 30–31 are analyzed in a similar way, giving a final
abstract value forptr of 1 + TC3 + TC4〈0, 0, ∗, ∗〉.

Adapting to dynamic traces. Though as previously described,
the linear dependence analysis could be applied in a completely
static context, some additional improvements are possible when
operating as our tool does on a single execution trace.

An important simplification is that analysis of a trace does not
require a conservative alias analysis, which is often a source of
scalability challenges and/or imprecision in static analysis. Instead,
our analysis can distinguish memory regions using the concrete
addresses observed on the trace. When a symbolic value is used
as a memory address (e.g., indexing an array), we use the concrete
address value, as is common in single-path symbolic execution.

A second difference relates to our coverage goals. A purely
static analysis attempts to give an answer that holds for the entire
space of program inputs; but sometimes, no informative answer
can be given, such as if the true relationship is too complex for
the abstract domain. Other things equal, a result that covers a
larger class of executions is most useful, but results that represent
no constraint at all are useless. In mixed concrete and symbolic
execution the particular set of executions to which our results apply
can be flexible, so we aim for the largest set of executions for which
the analysis gives an informative result.

To achieve this, we also allow our tool to lower uninformative
⊤ abstract values back to the constant value representing the value
the variable had in the concrete trace at that point. This is similar in
effect to removing from consideration all the executions on which
that variable had any other value, though less drastic because those
executions can still contribute to the generality of other abstract
values. Given that there is a limit to the amount of generality our
abstract values can represent, this lowering reflects a judgment
that it is more valuable for them to abstract over variation that
occurs close to the point where they are queried. For instance, if

the combined effect of two nested loops is nonlinear, our analysis
will retain the dependence on the inner loop’s trip count.

Theoretically, it is not clear when the best points to lower an
abstract value in this way would be: for instance, delaying a lower-
ing at one program point might remove the need to lower another
value later. However, we have had good results by performing the
lowering eagerly just before a⊤ value would otherwise propagate.

3.2 Linking Loops to Input
After Step 1 (symbolic analysis of loop dependencies), the sym-
bolic expressions for program state variables our tool computes de-
pend on two types of symbolic variables: the symbolic variables
representing the data values of each byte in the input and the trip
count variables. Thus, to obtain the relationship between the pro-
gram state variables and the input, we need to obtain the relation-
ship between the trip count variables and the input. In general, such
relationships might be very complicated. However, we leverage the
observation that most such trip count variables relate to certain fea-
tures of the structure of the input such as the length of a variable-
length field (such as a string) or the number of records of the same
type (callediterative fields).

To precisely capture these repetitive features of program inputs,
which are missing from descriptions like context-free grammars,
we introduce the concept ofauxiliary attributes. For instance, we
introducelengthattributes to represent the size of fields that might
vary in length, andcountattributes to represent the number of times
iterative fields are repeated. Auxiliary attributes are associated with
grammatical units at any level (e.g., terminals and non-terminals
in a context-free grammar), such as Length(URI) for the length
of a URI field in the HTTP grammar. They can also be system-
atically added to an existing parser as an attribute grammar (as in
yacc [29]); for instance, the length for a non-terminal in a rule can
be computed as the sum of the lengths on the right-hand side of the
rule. In some cases, the value of an auxiliary attribute is provided
in another field of the input. Our technique can take advantage of
auxiliary attributes that appear in the input in this way, but it also
uses them in ways that do not require them to appear in the input.

The goal for the linking step is to identify loop-computed val-
ues in the program that represent auxiliary attributes; for instance,
if a loop is used to compute the length of a field. Previous work [9]
shows that automatic inference of variables that iterate over multi-
ple variable-length fields is feasible. We use similar techniques; in
short, we determine that a loop’s iteration count is the length of a
field if its exit condition checks either a delimiter for the field or a
value derived from a length or count auxiliary attribute of the field.
In more detail, we use the following steps:

1. Relate data-dependent bytes to fields. As in single-path sym-
bolic execution, our tool determines for each variable in the trace
which input byte(s) (identified by offset) it directly depends on.
Our tool also parses the input according to the known gram-
mar, and so determines which protocol field contains each input
byte. Therefore, one simple way of matching variables with one
or more input fields is to combine these two mappings. For in-
stance, in the example of Figure2, the bufferURI contains the
contents of the fieldURI.

2. Identify variable length fields, counts, and delimiters. The input
grammar also identifies which fields correspond to the lengths or
iteration counts of other fields, and our tool maps this informa-
tion through direct dependencies to determine program variables
that represent lengths and counts. Also, we use the grammar to
determine which values are used as delimiters to signal the end
of a variable-length field. For instance, in the HTTP grammar,
the fieldURI is delimited by a space character.

3. Identify variables used in loop exit conditions. By analyzing
loops as described in Section5, our tool determines which vari-
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ables are used in the conditions that determine when to exit a
loop. For instance, the loop on lines 26–27 of Figure2 is guarded
by a condition on the variablesi anduri_len.

4. Recognize loops over delimited fields. If the exit condition of a
loop compares bytes of a field to a value that is the delimiter
of the field, then we link the iteration count of the loop to the
length of the field. For instance, in Figure2, the loop on lines
12-16 compares each byte of the URI field to a space, which
is known from the grammar to be the delimiter of the URI,
so the execution count of that loop is the length of the field
(TC1 = Length(URI)). In other situations, a loop may process
several bytes on each iteration, which gives a relation with a
scale factor. For instance, if each iteration processes a 4-byte
word, the field length is equal to 4 times the loop trip count.

5. Recognize loops over counted fields. If the exit condition of
a loop compares a variable to a value that is identified in the
grammar as the length of a field or the counter for a repeated
field, then we link the iteration count of the loop to that length
or count field. As in the case of a delimited field, the scale factor
between the field and the trip count may not be 1, for instance if
a loop process several items in each iteration.

While these techniques are not enough to recognize every loop
that might be written, they represent the most common patterns, and
we have found them to be sufficient to capture the relationships for
both length and count attributes in practice.

4. Applying LESE
Loop-extended symbolic execution can be used to get better results
from mixed concrete and symbolic execution whenever it is used
with programs in which loops occur. In this section we describe
how to apply it to test generation and in problems about security
bugs in software. First, we describe the primitive operation of using
LESE to determine how a given predicate might be satisfied during
program execution: on a single program path, but perhaps involving
different numbers of loop iterations. We then show how to use this
primitive for improving coverage in test generation, discovering
previously unknown security bugs, and diagnosing the cause of a
bug given only an execution that exercises it.

4.1 Loop-extended Condition Analysis
A basic use of single-path symbolic execution is to determine the
conditions under which a predicate at a program location can be
true. For instance, the predicate might be a branch condition, a
programmer-provided assertion, or an array bounds check. We start
with the predicate (which we will call thequery predicate), associ-
ated with a program point, and an execution that reaches that point,
but does not satisfy the predicate. Then the task is to determine the
conditions on an input to the program that could cause execution
to follow the same path, but cause the query predicate to be true.
Using loop-extended symbolic execution, we enhance this condi-
tion analysis by taking into account other program executions that
are similar to the observed one, but might involve different num-
bers of loop executions. Once the predicate has been chosen, this
loop-extended condition analysis takes the following 3 steps:

1. Derive symbolic expressions in terms of inputs.Given the orig-
inal execution trace, our tool performs loop-extended symbolic
execution on the trace as described in previous sections. The re-
sult of this step gives a symbolic expression for each program
state variable that depends on the inputs, including both data de-
pendencies and control dependencies introduced by loops.

2. Instantiate query predicate.Our tool instantiates the query pred-
icate by using the symbolic expression computed for each vari-
able that appears in the predicate.

3. Solve constraints.The query predicate can be satisfied if there
exist inputs to the program that simultaneously cause it to reach
the location of the predicate, and satisfy the predicate. So our
tool conjoins a path condition with the query predicate, and
passes this formula to a decision procedure to determine if it
is satisfiable. Constraints in the path condition that arise from
loop exit conditions are removed, since they are superseded by
loop-dependent symbolic expressions. Our implementation uses
STP [21], an SMT solver that represents machine values pre-
cisely as bounded bit vectors. If the formula is solvable, STP
returns a satisfying assignment to its free variables, which repre-
sent particular input bytes and auxiliary attributes. A grammar-
based input generation tool [4,23] can then be used to produce a
version of the initial input, modified according to the satisfying
assignment, which is a candidate to satisfy the predicate.

4.2 Applications of Loop-Enhanced Conditions
Loop-extended condition analysis has many applications. In this
section, we describe three: improving the coverage of test genera-
tion based on mixed concrete and symbolic execution, discovering
violations of security properties, and diagnosing the exploit condi-
tions of a security flaw.

4.2.1 Improving Test Generation
Test generation is the task of discovering inputs to a program
that cause it to explore a variety of execution paths. Single-path
symbolic execution can be used in an iterative search process to
find such inputs [10,24,42], but it does not cope well with program
branches that involve loop-dependent values; using LESE instead
allows test generation to achieve higher coverage.

The basic operation in such an iterative search is to take an ex-
ecution path and a branch along that path, andreversethe branch:
find an input that causes execution to reach that branch, but then
take the opposite direction. By reversing different branches in ex-
ecution one at a time, a search tool could eventually explore every
possible execution path, and a biased choice of which branch to re-
verse can implement a more directed search. Reversing a branch
is just an application of the primitive of Section4.1, where the
query predicate is a branch condition or its negation. The bene-
fit of using loop-extended symbolic execution instead of single-
path symbolic execution in test generation can be seen in two as-
pects: First, an LESE-based exploration is able to reverse branches
whose conditions involve loop-dependent values; in a tool based on
SPSE, by contrast, loop-dependent values are not considered sym-
bolic. Second, an iterative search performed with LESE is more
directed, since the conditions it reasons about capture more infor-
mation about the program. For instance, if a subsequent branch de-
pends on a loop-derived value, LESE-based search requires only
one iteration to determine a number of iterations of the loop to re-
verse the condition. The length check on line 23 in the example
of Figure2 shows this benefit: an LESE-based generation tool can
immediately construct an input with a long-enough version field,
because the length is a symbolic variable, while an SPSE-based
tool could only stumble on such an input by trial and error.

4.2.2 Vulnerability Discovery
Many classes of security vulnerabilities can occur when asecurity
predicateis violated during program execution. For instance, given
a program that writes to an array, a buffer overflow occurs if the
index of a write to an array is outside of the correct bounds.
In a program that uses machine integers to compute the length
of a data structure, an integer overflow vulnerability occurs if a
computation gives the wrong result when truncated to word size. To
check whether program logic is sufficient to prevent such failures,
the problem of vulnerability discovery, or “fuzzing,” asks whether
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there is a program input that could violate the security predicate.
Vulnerability discovery is similar to test case generation; the only
difference is the additional checking of a security predicate at each
dangerous operation. Thus, like test generation, it can be performed
using our loop-extended condition analysis: the query predicate is
just the negation of the security predicate.

Loop-extended symbolic execution is a particularly good match
for discovering vulnerabilities related to input processing, because
the data structure size values that are misused in buffer over-
flow and integer overflow vulnerabilities are often processed us-
ing loops. The buffer overflow in Figure2 is typical in this way.
Depending on the security property, some preprocessing might be
needed to precisely define the security predicate describing how an
operation might be unsafe: for instance, when checking for a buffer
overflow, to determine the length of the vulnerable buffer. We will
discuss some practical aspects of such preprocessing in Section5.

Comparison with length abstraction. Xu et al.[46] suggest a dif-
ferent approach to making SPSE work better for certain buffer over-
flows, by abstracting over the length of string buffers. Specifically,
their Splat tool uses a programmer-supplied annotation to treat a
chosen prefix of a buffer’s contents as symbolic; for the rest of the
buffer, Splat ignores potential contents but treats the length as sym-
bolic. When a buffer is processed using standard string functions,
source-level summaries of those functions maintain the length ab-
straction. Splat’s length abstraction is a simple technique that is
effective for a limited class of buffer overflows involving only stan-
dard string functions. However, it does not provide the other advan-
tages of LESE over SPSE: it does not apply if a program processes
a string buffer using its own loop, or to any other loops in a pro-
gram. We compare our implementation and experimental results
with Splat in Section6.1.

4.2.3 Vulnerability Diagnosis
If a vulnerability has already been exploited by an attacker, another
important application is diagnosing it: extracting a set ofvulner-
ability conditions(general constraints on the values of inputs that
exploit the vulnerability). Diagnosis is an important problem in se-
curity because vulnerability conditions are useful for automatically
generating signatures to search for or filter attacks, or to help a se-
curity analyst understand a vulnerability.

Vulnerability diagnosis is again based on the loop-extended
condition analysis primitive of Section4.1: in fact, the combination
of a path predicate and a negated security predicate gives a vulner-
ability condition. However, symbolic execution typically generates
thousands of constraints, so our tool performs several optimizations
to simplify them into a smaller set, as discussed in Section5. Such
simplification is particularly important for applications involving
manual analysis, but a compact condition is also more efficient for
use by later automated tools.

Some forms of vulnerability diagnosis could be performed us-
ing SPSE, but an SPSE-based diagnosis would be too narrow for
many applications, including most buffer overflows. For instance,
an SPSE-based diagnosis of the web server in Figure2 could cap-
ture some generality in the contents of the input fields, but it would
restrict their lengths to the particular values seen in the sample ex-
ploit. A filter based on such a diagnosis could be easily bypassed by
an attack that used a different length URI. By contrast, LESE finds
more general conditions; for instance, in the example of Figure2,
it finds thatmsgbuf can be overflowed by inputs of arbitrary size,
as long as the sum of the lengths of two fields is at least 99.

5. Implementation on Binaries
We have implemented loop-extended symbolic execution and an
automatic buffer overflow diagnosis and discovery tool. We imple-
mented the core loop-extended symbolic execution component de-

scribed earlier in OCaml, and the protocol format linkage in OCaml
combined with C and Python code to integrate with off-the-shelf
parsers. For much of the binary analysis, such as taking an execu-
tion trace and getting the semantics of x86 instructions, we used
an existing infrastructure. This infrastructure represents the trace in
an intermediate representation language, similar to that of the VEX
library used in Valgrind [39], to facilitate standard transformations
such as slicing and conversion to SSA form.

In this section, we outline several additional components we
developed to realize our proposed primitives, and heuristics that
make this approach practical when working with binaries.

• Memory layout extraction.To check for overflows in pointer
accesses, we need a representation of the memory allocations
made by the program at different points in its execution. This
module extracts this information from the trace, giving a log file
listing each allocation and deallocation event.
It would be simple to model each function’s activation record
as a single allocation. However this yields imprecise results—
for instance, while it would detect the possibility of a buffer
overflow corrupting a return address, it would miss corruption
of other stack data, such as saved register values [13].
Therefore, our approach uses a much more precise notion of al-
locations that accounts for separate variables and temporaries
allocated in the stack. It uses a comprehensive abstract inter-
pretation based on static binary analysis of stack-based memory
accesses to partition the activation record into finer variable-like
quantities. For this, we implemented an existing technique called
stack analysis [41], though other techniques [2, 3] could alter-
natively be used. For dynamically allocated variables, our tool
records call arguments to memory allocation functions, such as
malloc, in standard libraries and over 100 Windows functions
that allocate memory.

• Loop information extraction.We use IDA Pro [28] to disassem-
ble binaries. Based on this disassembly, we implemented stan-
dard loop detection analysis algorithms [1]. There are two im-
portant modifications that were useful for obtaining results for
our case studies.

1. Addition of dynamic edges.The presence of indirect call and
jump instructions in functions hinders static CFG extraction:
an analysis may completely miss code blocks that are reach-
able only through indirect jumps. Our static control flow graph
extraction is supplemented with indirect jump targets ob-
served during tracing, which allows many more loops to be
discovered. For instance, such loops were critical to obtaining
accurate results in the SQL Server case study of Section6.

2. Irreducible loops.Unlike when compiling from source code
of high-level languages, loops in binaries are often irreducible.
We dealt with this by employing standard transformation tech-
niques to make loops reducible.

• Call graph extraction.To separate executions of loops in dif-
ferent function activations, and to reason about functions called
in loops, our tool requires a function call graph. Dynamic tech-
niques proved to be sufficient in this case, but it is not enough
to simply matchcall instructions with correspondingret in-
structions, particularly for the low-level code found in system
libraries. For instance, mismatched instructions can be caused
by hand-written assembly code, compiler optimizations such as
tail-call elimination, andlongjmp. Instead, our tool maintains
a mirror auxiliary stack to model the program’s stack usage for
call/return operations. It pushes the return address on the mir-
ror stack at the point of a call, and considers a function to have
exited when the instruction at this return address is executed.

• Protocol Grammar. We used an off-the-shelf IDS/IPS, Wire-
shark [43], to obtain protocol grammars of network protocols
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we study, and the Hachoir [27] library for the grammars of me-
dia file formats. Such grammars are available in many applica-
tion domains, but if they are not, they can also be automatically
inferred from analysis of a program [9, 31, 44]. Such a protocol
grammar can also be used to generate new legal inputs that sat-
isfy particular constraints, such as by language intersection [23]
or solving string constraints [4].

• Input Generation.Given an initial input, a grammar, and con-
straints on auxiliary attributes, the input generation problem asks
for a new input that is legal according to the grammar and satis-
fies the constraints. We find that a relatively simple input genera-
tion approach works well with our LESE implementation: when
a constraint requires that a length or count be larger, we repeat
elements from the initial input until the result is long enough.

• Constraint simplification.The first simplification our tool per-
forms is to remove constraints that are not relevant to the secu-
rity predicate. It performs a live-variable analysis at the level of
the intermediate representation, where only the variables used in
the security predicate are live at the end of the trace. Any con-
straints that do not mention any live variables are eliminated.
Then, the tool performs constant folding on the constraints, and
simplifies them using the algebraic simplification routines of the
STP constraint solver (which are available as a library).

6. Evaluation
We evaluated the effectiveness of our LESE implementation by ap-
plying it to discovery and subsequent diagnosis of buffer overflow
vulnerabilities. We selected two kinds of subject program for this
evaluation. For comparison with other implementations, which re-
quire source code and/or run only on Linux, we use standard bench-
mark suites containing known overflows. To test the practical util-
ity of our tool, we use real-world Windows and Linux applications
with historic vulnerabilities. Our tool discovers all the benchmark
overflows, as well as those in real-world applications, by generating
just a few candidate inputs.

6.1 Benchmarks Comparison
As benchmarks, we used a set of 14 programs extracted from
vulnerabilities in open-source programs (BIND, Sendmail and
WuFTP) by researchers at the MIT Lincoln Laboratories [47],
which range between 200 and 800 lines of code each. (These are
the same benchmark programs used by Xuet al. [46]).

Replacing SPSE with LESE would be beneficial throughout
the process of input space exploration in vulnerability discovery,
since symbolic expressions for loop-dependent values allow more
branches to be reversed, as discussed in Section4.2.1. However,
it can be difficult to fairly compare symbolic execution tools on
an end-to-end basis, because of differences in input assumptions
and search heuristics. Therefore, we confine our evaluation to the
last stage of vulnerability search by starting both our tool and
an SPSE tool with a program input that reaches the line of code
where a vulnerability occurs, but does not exploit it. These inputs
are short and/or close to usual program inputs, so they could be
found relatively easily by either an SPSE-based or an LESE-based
approach (though the time required would still be highly dependent
on the initial input and search heuristics used). Therefore, the
results on these inputs provide a bound on the performance of an
end-to-end system: if a tool is unable to find a vulnerability given
the hint of a nearby input, it would also be unable to find it starting
from a completely unrelated input.

Results and New Bugs.The upper half of Table1 shows the re-
sults of our tool on the Lincoln Labs overflow benchmarks. The first
column identifies each benchmark, and the second column summa-
rizes the input grammar our tool uses. The third and fourth columns

give the initial input our tool started with, and the exploit input it
found. The fifth column gives the number of candidate inputs our
tool generates (after the slash), and the number of those that in fact
cause an overflow (before the slash). The sixth column gives the
total runtime of our tool, starting with the initial input trace and
including all the discovered overflows. (The seventh column will
be discussed in Section6.3.) All experiments were performed on a
3GHz Intel Core 2 Duo with 4GB of RAM.

Our LESE tool discovers most of the bugs in just a few minutes,
requiring only a few candidate inputs each. In each case, we sup-
plied a small benign input, and the tool automatically found that
a longer input could cause an overflow. Our tool also discovered
an apparently new bug in one of the Lincoln Labs benchmarks: in
addition to the known overflows (marked with/* BAD */ com-
ments in the benchmark code) our tool finds a new overflow on line
340 of the functionparse_dns_reply in Sendmail benchmark
7. (In the other cases where our tool reports multiple overflowing
inputs, they were a set of related errors marked in the benchmark.)

Comparison with SPSE and Splat.To compare our tool with a
single-path symbolic execution tool that also works on (Linux)
binaries, we used the latest version (dated Jan 22nd 2009) of
catchconv [12] (also called SmartFuzz), an implementation of
white-box fuzzing [25]. Examination of Catchconv’s results con-
firms the expected characteristics of an SPSE-based discovery tool.
When there is no direct dependence between an input byte and an
overflowing pointer, Catchconv can only explore the input space
in an undirected fashion, and so requires many candidate inputs to
discover even a short exploit. For instance, Catchconv runs for 6
hours on the Sendmail 1 benchmark, but does not find an exploit.

The Lincoln Labs benchmarks also allow a comparison with
the Splat tool of Xuet al. [46], which extends single-path symbolic
execution with a length abstraction as described in Section4.2.3.
Unfortunately, the Splat developers were unable to supply us with
a version of their tool that matches the results obtained in their pa-
per (the publicly available version seems to only support 32 bits of
symbolic input), so we could not perform a head-to-head compari-
son. Also, because of the way the benchmarks were modified to be
self-contained, it is not always clear which variables should be des-
ignated as the program inputs, and the Splat authors were unable
to supply us with the designations used in their experiments. For
instance, the BIND 2 benchmark exercises code from BIND that
parses a DNS packet, and also includes code to generate an appro-
priate packet. As shown in Table1, we considered the packet itself
to be the input, so that only an input that is a mostly syntactically
correct packet will cause an overflow. By contrast, the Splat au-
thors report that for their choice of input, only the size and not the
contents of the input are relevant to the bug, perhaps because they
took some value in the packet generation process to be the input.
We believe our choice makes for a more realistic evaluation, but it
also makes the task much more difficult. In particular, this means
that a direct comparison of the tools’ execution times would not be
meaningful. However, our tool was able to find exploits for the two
benchmarks (Sendmail 1 and 5) on which Splat times out. (In the
case of Sendmail 5, the total running time of our tool to evaluate
3 candidate inputs is longer than the two hour timeout used with
Splat, but our tool reports its first vulnerability before two hours
have elapsed.) On the remaining benchmarks, our tool reproduces
Splat’s positive results on the complete programs, without requir-
ing source code annotations or hand summaries of string functions
that would make a tool difficult to use in practice.

Accuracy of candidate inputs. In the fifth column, Table1 shows
the number of candidate test inputs our tool generated in the process
of finding each exploit. The fact that only a few tests were required
(on average,62.5% of the candidates our tool generates are real
exploits) demonstrates the targeted nature of LESE-based search:
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Program Input Format Initial Input Exploit Input Bug / Time (s) Loop-Dep.
Candidate Conditions

BIND 1 DNS QUERY 104 bytes, RDLen=30 RDLen=10 1/5 2511 16
BIND 2 DNS QUERY 114 bytes, RDLen=46 RDLen=30 1/4 2155 12
BIND 3 DNS IQUERY 39 bytes, RDLen=4 RDLen=516 1/2 586 13
BIND 4 DOMAINNAME “web.foo.mit.edu” “web.foo.mit.edu” (64 times) 1/1 4464 52
Sendmail 1 Byte Array “<><><>” “<>” (89 times) 4/5 672 1
Sendmail 2 struct passwd (Linux) (“”,“root”,0,0,“root”,“”,“”) (“”,“root”,0,0,“rootroo”,“”,“”) 1/1 526 38
Sendmail 3 [String]N [“a=\n”]2 [“a=\n”]59 1/4 626 18
Sendmail 4 Byte Array “aaa” “a” (69 times) 1/1 633 2
Sendmail 5 Byte Array “\\\” “\” (148 times) 3/3 18080 6
Sendmail 6 OPTION◦’ ’◦ARG “-d aaaaaaaaa-2” “-d 4222222222-2” 1/1 676 11
Sendmail 7 DNS Response Fmt TXT Record : “aaa” Record : “a” (32 times) 1/1 237 16
WuFTP 1 String “aaa” “a” (9 times) 2/2 483 5
WuFTP 2 PATH “aaa” “a” (10 times) 1/1 197 29
WuFTP 3 PATH “aaa” “a” (47 times) 1/1 109 7

GHttpd Method◦URI◦Version “GET /index.html HTTP/1.1” “GET ”+188 bytes + “ HTTP/1.1” 2/2 1562 41
SQL Server Command◦DBName x04 x61 x61 x61 x04 x61(194 bytes) 1/3 205 1
GDI (Not required) 1014 bytes, INP[19:18]=0x0182 INP[19:18]=0x4003 1/1 353 2

Table 1: Discovery Results for benchmarks and real-world programs.A circle (◦) represents concatenation. In[X]k, k denotes the auxiliary
count attribute specifying the number of times elementX repeats.

the tool efficiently chooses appropriate loop iteration counts and
prunes buffer operations that are safe, concentrating on the most
likely vulnerability candidates. Of course, since the candidates are
concrete inputs that can be automatically tested, failed candidates
are not reported: the tool gives no false positive results.

6.2 Evaluation on Real-World Programs
As full-scale case studies, we took 3 real-world Windows and
Linux programs which are known to have buffer overflow vulnera-
bilities. These include the program targeted by the infamous Slam-
mer worm in 2003 [37], the one affected by a recent GDI vulnera-
bility in 2007 [34], and an HTTP server [22]. Table1 summarizes
the vulnerabilities in these programs and the input grammars our
tool used. We gave benign initial inputs to these programs that are
representative of normal inputs that they would receive in practice.

Our tool discovers buffer overflows in all 3 real world programs,
starting with a benign input. The bugs found in the GDI and SQL
cases are the same as reported earlier in these programs, as we man-
ually confirmed. For ghttpd, our tool discovered two buffer over-
flows vulnerabilities in theLog function inutil.c. One of these
is described in previous research using this subject program [14].
The new vulnerability involves a separate buffer and would require
a separate fix. These results are summarized in Table1; next we
explain each test vulnerability in more detail.

GHttpd vulnerability. GHttpd is a Linux web server; our case
study used version 1.4.3. We send an initial benign input,GET
/index.html HTTP/1.1, to the running web service, and it
responds normally. Given a trace of this execution and the HTTP
grammar, our tool discovers 2 potential buffers to overflow and
generates candidate exploits for each. These inputs are the same
as the initial input except that their URI fields have lengths of 188
and 140 bytes respectively. Testing confirms that both candidates
indeed cause overflows: the shorter request overflows one buffer,
and the longer one overflows both that buffer and a subsequent one.

SQL Server vulnerability. This vulnerability is a stack-based
overflow in Microsoft’s SQL Server Resolution Service (SSRS),
which listens for UDP requests on port 1434. Based on its speci-
fication [35], one valid message format contains 2 fields: a header
byte of value 4, followed by a string giving a database name. We
send the SSRS service a benign request that consists of the header
byte and a string “aaa”, to which the service responds correctly.
Given the trace and the input grammar, our tool finds 3 potential

buffers to overflow and generates one candidate inputs for each.
Our automated testing reports that one candidate, which is 195
bytes long, overflows a buffer that is the same one exploited by the
SQL Slammer worm. (The other two candidate inputs are longer
than the maximum-length UDP packet, so they are discarded dur-
ing testing and not reported.) The fact that such large inputs could
be generated in a single step, rather than via a long iteration pro-
cess, shows the power of LESE.

GDI vulnerability. This vulnerability in the Microsoft Windows
Graphic Rendering Engine was reported and patched in 2007. We
created a benign and properly formatted WMF image file using Mi-
crosoft PowerPoint, containing only the text “aa”; the file is 1014
bytes long. We attempt to open the file using a sample application
and record the program execution. Without using an input gram-
mar, our tool discovers a potential buffer read overflow and creates
an exploit input, which crashes the sample application. The only
differences between the exploit and the benign input are the values
in bytes 18 and 19 (shown in Table1). Comparing with a grammar
for the WMF image format, these bytes correspond to the size of
the image field.

6.3 Further Applications
Improving test coverage. Though our evaluation does not focus
on the exploration phase of vulnerability detection, our experiments
do demonstrate a feature of loop-extended symbolic execution that
makes it more effective in obtaining input space coverage. As de-
scribed in Section4.2.1, LESE improves on SPSE by finding sym-
bolic expressions for more branch conditions that depend on the
number of times loops execute, making it possible for a coverage
tool to reverse them. To measure this effect, we give in the seventh
column of Table1 the number of branches for which our tool found
a loop-dependent condition but no directly input-dependent condi-
tion, so that an LESE-based tool would be able to reverse them but
an SPSE-based tool would not. The count is a number of unique
program-counter locations (i.e., static and context-insensitive), and
excludes loop exit conditions. For instance, one of the 29 loop-
dependent conditions in WuFTP 2 is a length check (on line 464)
that was intended to prevent the buffer overflow. Because the check
is faulty, it is false on both our benign and exploit inputs, but ex-
ploring both sides would be critical for an exploration task, such
as verifying the lack of overflows in a fixed version. The condition
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is immediately apparent to our tool, but would not be considered
symbolic under standard SPSE.

Vulnerability diagnosis. Our tool can also be used for vulnera-
bility diagnosis: to find a general set of conditions under which
an exploit occurs. Diagnosis is most useful when a vulnerability
is already being used by attackers, and it is important to under-
stand and defend against attacks quickly: vulnerability conditions
can accelerate or replace manual analysis of an exploit, and be used
to generate filters to detect or block attacks. But to be useful, such
conditions must be broad enough to cover a large class of attacks.

We used our tool to perform diagnosis on the same real-world
programs described in Section6.2. Either a publicly available ex-
ploit, or the exploits generated by our discovery tool, could be used
and produce the same results.

Our tool’s diagnoses, summarized in Table2, are more accurate
and usable than those given in previous work [18]. For instance,
for the Microsoft SQL Server vulnerability, the condition our tool
generates states that the vulnerable field’s length must be greater
than 64 bytes, whereas the buffer overrun vulnerability condition
generated in previous work states that the length must be at least 97
bytes [18]. This difference turns out to be significant. Because we
have no access to source code, we validated our results experimen-
tally by supplying inputs of various sizes to the server. We found
that when the vulnerable field has a size larger than 64 bytes, the
overflow overwrites pointers with invalid values, causing an excep-
tion when these values are dereferenced.

Also note that most diagnoses of buffer overflows, including the
GHttpd and SQL Server examples shown in Table2, could not be
produced by a standard SPSE tool, which lacks even a notation to
refer to the length of an input field.

7. Related Work
This section discusses two classes of related research: first, other
work on analysis approaches similar to our loop-extended symbolic
execution; then, work that also addresses the problem of discover-
ing and/or diagnosing buffer-overflow attacks.

7.1 Analysis Approaches
Single-path symbolic execution.The technique we refer to as
single-path symbolic execution has been proposed by a number
of researchers, with modest variations in technique and sometimes
larger differences in terminology. It is also called “directed test-
ing” [24], “execution-generated test cases” [10], “concolic test-
ing” [42], and “whitebox fuzzing” [25]. It was first proposed as
a test-generation technique to produce program inputs that cover
new program paths, and therefore uncover bugs, including security
vulnerabilities. In addition to generating new inputs, the symbolic
conditions derived from an execution path also have a number of
other applications, such as building signatures to filter network at-
tacks [6] or searching for differences between implementations [5].

Extensions to single-path symbolic execution.Several previ-
ous approaches have extended single-path symbolic execution with
additional information about the program or its possible inputs.
Previous grammar-based approaches [23,33] have taken advantage
of knowledge of which program inputs are legal to reduce the size
of the search space when generating new inputs. By comparison,
our use of an input grammar in Section3.2is focused on extracting
more information from a single execution. The Splat tool of Xuet
al. [46] also targets the problem of buffer-overflow diagnosis, but
they do not explicitly model loop constructs as in loop-extended
symbolic execution. We compare to their approach in Section4.2.2,
and to their implementation and experimental results in Section6.1.

Static analysis.Determining linear (technically, “affine”) rela-
tionships among the values of variables, as our analysis in Sec-

tion 3.1 does, is a classic problem of static program analysis, pio-
neered by Karr [30]. Like many properties that involve more than
one variable, it can potentially become expensive. For instance the
polyhedron technique [16] requires costly conversion operations on
a multi-dimensional abstract representation. More recent research
has considered restricted abstract domains that allow for more effi-
cient computation, such as “octagons” [36] and “pentagons” [32].
The techniques of M̈uller-Olm and Seidl [38] have the advantage
of giving precise results even with respect to overflow, but their
runtime is a high power of the number of variables in a program
(k7 for the interprocedural case). Random analysis [26] can also
be used to determine linear relationships, with a small probability
of error. For the simpler case we consider, it is sufficient to take
a more efficient non-relational approach: we express the values of
program variables not in terms of each other but in terms of a small
set of auxiliary trip-count variables.

7.2 Discovering and Diagnosing Buffer Overflows
Buffer-overflow vulnerabilities are a critical security challenge, and
many approaches have targeted them. Sound static analysis holds
the possibility of eliminating false negatives, but in practice buffer
overflow checking is difficult enough that sound analysis is possible
only for small programs with extensive user annotation [19]. More
comparable to our approach are scalable bug-finding tools [20,
45]. However, pure static analysis approaches suffer from false
positives, which tool users must examine by hand. For instance, one
comparison [47] using the same benchmarks we use in Section6.1
found that many tools produced so many false positives they did
only slightly better than chance. Dynamic analysis techniques, on
the other hand, avoid false positives by examining programs as
they execute [15, 17, 40]. However, the requirement of running
on all executions means that the overhead of dynamic analysis
tools can limit their applicability. Symbolic execution combines
static and dynamic techniques in order to generalize from observed
executions to similar unobserved ones, and loop-extended symbolic
execution extends this generalization to include loops.

Our vulnerability diagnosis using loop-extended symbolic exe-
cution extends previous diagnosis approaches based on single-path
symbolic execution [6, 8, 14]. Bouncer [14] employs source-code-
based static alias analysis along with SPSE.

ShieldGen [18] uses a protocol-specification-based exploration
of the input space to diagnose a precise vulnerability condition.
However, in contrast to our work, it treats the program as a black-
box, ignoring the implementation. In addition, it does not capture
complex relationships between fields that may be necessary to ex-
ploit a vulnerability. For instance, as its authors point out, Shield-
Gen cannot capture the condition that the combined length of two
fields must exceed a buffer size for exploit (as in the example of
Section2), which our techniques can.

8. Conclusion
We propose loop-extended symbolic execution, a new type of sym-
bolic execution that gains power by modeling the effects of loops.
It introduces trip count variables with a symbolic analysis of lin-
ear loop dependencies, and links them to features in a known input
grammar. We apply this approach to the problem of detecting and
diagnosing buffer overflow vulnerabilities, in a tool that operates on
unmodified Windows and Linux binaries. Rather than trying a large
number of inputs in an undirected way, our approach often discov-
ers an overflow on the first candidate it tries. Our tool finds all the
vulnerabilities in the Lincoln Labs benchmark suite and gives accu-
rate symbolic conditions describing real vulnerabilities. These re-
sults suggest that loop-extended symbolic execution has the poten-
tial to make many kinds of program analysis, including important
security applications, faster and more effective.
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Program Buffer size (bytes) Condition for overflow Constraint generation time (s)

GHttpd (1) 220 URI.len > 172 420 + 23
GHttpd (2) 208 URI.len > 133 420 + 140
SQL Server 128 DBName.len > 64 192
GDI 4096 (2·INP[19:18])>>2 < 0 200

Table 2: Diagnosis results on real-world software. Generation time for GHttpd consists of the pre-processing time (420 seconds) and the
post-processing time (23 and 40 seconds) for each overflow condition.
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